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Advection of a Scalar
Ou(x,t) v@u(w,t)

e Governingeq.|—— = —

ot ox

o Scalar u is simply transported with a velocity »
o Assuming » is constant
o wuis conserved = [u(z,t)dz = constant
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Finite Difference Approximation
A

Discretize space and time

u(z,t) = u;
T; = xo + JAx
t =ty + nAt

Given u7, solve u?*

Taylor expansion

1

o L L o
u'llz—i-l u?“ u'g—}—l ufxr—l—l
o o o o
n n n n
Uy Uy Usg Un
XL

fla+ Aa) = f(a) + f (@) Aa + o " (@)Ad? + o 1" (2)Ac+..

o Use it to approximate partial derivatives by discrete u"’
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o That’s what differentiates different schemes
m  May NOT be as trivial as you think!



Forward-Time Central-Space Scheme

Ou(x,t) Ou(x,t)

e Advection eq.
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e FTCS scheme:
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Forward-Time Central-Space Scheme

e Explicit scheme
o u"! for each J can be computed explicitly from values at { = ¢

J

o) ug’H for different ; be computed independently (and thus in parallel)

o In comparison, implicit schemes solve equations coupling u?“ with
different j

e FTCS scheme is very simple. But, it is UNSTABLE in general for
hyperbolic equations!



Governing Equations of Ideal Hydro

e Euler eqgs.

0(pv)
ot
OF

dp

— + V- (pv)=0

ot

+ V. (pvv+ PI)=0

__|_V.

ot

(E + P)v] =0

<— mass conservation
<— momentum conservation

< energy conservation

e p: mass density, »: velocity, P: pressure, £ total energy density,
identity matrix

1
E:e+§pv2

, Where ¢ is the internal energy density

e 6 variables, 5 equations = need equation of state to compute P

P
o For example, ideal gas: e = ——, where y is the ratio of specific heat
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Conserved vs. Primitive Variables

Conserved variables Primitive variables
- 8 rh
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Flux-Conservative Form in 1D

e Euler eqgs. in a compact flux-conservative form:
OF,
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F, Fy, F : fluxes along different directions
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Finite-Volume Scheme

e Divergence theorem: / —dV /V(V - F)dV = —]{S(F-n)dS

e Integrate over the cell volume Ax4y4z and time interval Ai={"*! - "
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e-Volume Scheme

e Euler egs. can be casted into the following form:

ik — Tigk T Ag T @itl/25k T T ai-1/25k
At g2 pnil)2
Ay y,Z,]+1/2,k y,z,j—1/2,k
At g2 pntl)2
Az 2y0,J,k+1/2 2y0,J,k—1/2
o Note that this form is EXACT!

O

m i.e., no approximation has been made

U’ i
i.j,k - volume-averaged conserved variables
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Lax-Wendroff Scheme

e Two-step approaches

o Step 1: evaluate U;J:rll/ézdefined at the half time-step n+-1/2 and the cell

interface j4-1/2 with the Lax scheme

n 1 At
ULy = U, +U) - —— [F(Uy

j+1/2 QN J 2IA L ]+1) - F(UTL)]
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o Step 2: use U;fll/zz to evaluate the half-step fluxes for the full-step update
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Ghost Zones

Ghost Zones Ghost Zones

dx

e Ghost zones are used for setting the boundary conditions
o Physical boundaries (e.g., periodic, outflow, inflow)
o Numerical boundaries between different parallel processes

e Number of ghost zones depends on the stencil size
o Lax-Wendroff: 1



Acoustic Wave Test

e How to test a hydrodynamic scheme?
o Euler eqgs. are coupled nonlinear eqs. — no trivial analytical solution

e Example: acoustic (sound) wave solution
o Perturb the Euler eqgs.

m Let p=pg+dp,v=20v,P= Py + P
m Ignore all high-order terms
m Insert the plane wave solution and solve the dispersion relation

C? = ~Py/po

) | dv, = Cs0pr/po
0P, = 0piC




Demo

lec4-demol-acoustic-wave-lax-wendroff




How about Nonlinear Solutions?

e Example: acoustic wave steepening:

-—= |nitial

ov ov 1 OP .
—— Steepening

E o os

nonlinear convection term
for wave steepening

-

Velocity

How does Lax-Wendroff scheme work in this case?

°
Try Increasing the d_amp parameter from 1e-6 to 1e-1 in the acoustic wave demo

(@)



Velocity

Pressure

Sod Shock Tube Problem
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Demo

lec4-demo2-shock-tube-lax-wendroff




Sod Shock Tube Problem
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Lax-Wendroff scheme
Unphysical oscillations

Motivate high-resolution
shock-capturing schemes




High-Resolution Shock-Capturing Methods

e Godunov method
o Approximate data with a piecewise constant distribution

U(z,t)4 'Riemann problems
I 1 Lit+1/2
"= — U(z,t")dx

Ti-1/2

2

vy ¢
. Uy

o Solve the local Riemann problems
m Piecewise constant data with a single discontinuity (like shock tube)
m Apply either exact or approximate solutions

o Update data by averaging the Riemann problem solution over each cell
m Equivalently, we can solve the intercell fluxes
m Avoid wave interaction within each cell



Riemann Problem in 1D Hydro

Euler egs. in 1D:

Riemann problem:
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Riemann Problem in 1D Hydro

e Exact solution of the Riemann problem involves three waves
o Contact discontinuity
o Shock wave
o Rarefaction wave

e

e Decompose the entire domain into four regions W, W o
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_ t contact discontinuity
shock or rarefaction wave 4
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Riemann Problem in 1D Hydro

e Riemann problem can be solved analytically
o Known: W, , W,
© Unknowns: W_, W, ,
m Infact, we always have P,;, = P,y and v, .. = v, .r (Decause the

middle wave is always a contact discontinuity)
m  So only 4 unknown variables: p.r, p«r, Px, Uz«

e However, exact Riemann solver is very computationally expensive
o Approximate Riemann solvers are usually accurate enough
m All we need is the interface fluxes
m Examples
e Roe solver
e HLLE solver
e HLLC solver



Higher-Order Godunov Methods

e MUSCL (Monotone Upstream—centred Scheme for Conservation
Laws)

e Data reconstruction within each cell
o Original Godunov’s scheme: piecewise constant method (PCM)
o Piecewise linear method (PLM)
o Piecewise parabolic method (PPM)

n
Uj—I—l




Higher-Order Godunov Methods

e Avoid introducing new local extrema during data reconstruction
o Reduce spurious (i.e., unphysical) oscillations
o Avoid unphysical values such as negative density/pressure

e Slope limiters
OU;(z) =U; +

(z —z5)

oy 0i, |z —z;| <Az/2

where 6—1 =S 6_1 (5,-_1/2, 6i+1/2)7 6i—1/2 = UZ — Ui_l
limited slope satisfying the TVD (Total Variation Diminishing) condition

20;-1/20i11/2
S ) 6i_ 62 > O
o Examples: vanleer: 6, =1 & 12+ 6119 1/20i+1/2 2>

0 y 0;-1/20;41/2 <0

_ { sign(8;_1/2) min(|6;_1/2/,0i11/2]), di—1/20i11/2 =0
0 y, 017201172 <0

MinMod: §;



Higher-Order Godunov Methods

e Effects of various slope limiters
o Diffusiveness (resolution) vs. robustness

e Left and right states are not equal unless the flow is smooth
o Define Riemann problems

e Data reconstruction on the primitive variables usually results in

better results (less oscillatory) than on the conserved variables
o It may be even better to reconstruct the characteristic variables

Diagonalize the linearized eqgs. of motion in the primitive variables
Determine eigenvectors
Perform eigen-decomposition on 4, ,,; and 4,,,,, to get the

characteristic variables
m Compute limited slopes on these characteristic variables




Second-Order Accuracy in Time

Example: MUSCL-Hancock scheme
1. Data reconstruction — obtain the face-centered data (i.e., data on the
left and right edges of each cell) at "

il 1.
UZL:UZL—E(%, UZ?R:UZTL+§67‘
2. Evolve the face-centered data by 4¢{/2 using

At
Uty — e _ —[Fm U ) — F, (U™ ]
e oL 9Az (Uir) (Uiz) < exactly the same fluxes;
n+1/2 o At n n c
U,-,E /2 _ i [F$(Ui,R) _ FiE(Ui,L)} / no ghost zones are required
2Ax
3. Riemann solver — compute the inter-cell fluxes

n+1/2 . n+1/2 n+1/2
F, . 1, = Riemann(Ur,Ur), whereU = U, - and Ur = U, |

4. Evolve the volume-averaged data by 4¢

At
n+l _ 71 n+1/2 n+1/2
Ui I Uz’ U A—:I; [Fm,iﬂ/z _ F:c,i—l/2}



Demo

1

lec4-demo3-acoustic-wave-muscl-hancock

lec4-demo4-shock-tube-muscl-hancock
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Sod Shock Tube with MUSCL-Hancock

MUSCL-Hancock = much better! Lax-Wendroff = unphysical oscillations...
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