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● Governing eq.

○ Scalar u is simply transported with a velocity v
○ Assuming v is constant
○ u is conserved ➝

Advection of a Scalar

vΔt



Finite Difference Approximation
● Discretize space and time

● Given      , solve 

● Taylor expansion

 

○ Use it to approximate partial derivatives by discrete
○ That’s what differentiates different schemes

■ May NOT be as trivial as you think! 



Forward-Time Central-Space Scheme 
● Advection eq. 

● FTCS scheme:
forward-time

↖central-space
(3-point stencil)

↙



Forward-Time Central-Space Scheme 
● Explicit scheme

○         for each j can be computed explicitly from values at t = tn

○         for different j be computed independently (and thus in parallel)

○ In comparison, implicit schemes solve equations coupling          with 
different j

● FTCS scheme is very simple. But, it is UNSTABLE in general for 
hyperbolic equations!



Governing Equations of Ideal Hydro
● Euler eqs.

● ρ: mass density, v: velocity, P: pressure, E: total energy density,        I: 
identity matrix 

                    , where e is the internal energy density

● 6 variables, 5 equations ➝ need equation of state to compute P

○ For example, ideal gas:                 , where γ is the ratio of specific heat

← mass conservation

← momentum conservation

← energy conservation



Conserved vs. Primitive Variables
Conserved variables Primitive variables



Flux-Conservative Form in 1D
● Euler eqs. in a compact flux-conservative form:

 

 
○ Fx, Fy, Fz: fluxes along different directions

 



Finite-Volume Scheme
● Divergence theorem: 

● Integrate over the cell volume ΔxΔyΔz and time interval Δt=tn+1 - tn



Finite-Volume Scheme
● Euler eqs. can be casted into the following form:

 

 

 

○ Note that this form is EXACT!
■ i.e., no approximation has been made

○            : volume-averaged conserved variables

○                     : time- and area-averaged fluxes y

x

z



Lax-Wendroff Scheme
● Two-step approaches

○ Step 1: evaluate              defined at the half time-step n+1/2 and the cell 

interface j+1/2 with the Lax scheme

 

○ Step 2: use                to evaluate the half-step fluxes for the full-step update



Ghost Zones

L
dx

Ghost Zones Ghost Zones

● Ghost zones are used for setting the boundary conditions
○ Physical boundaries (e.g., periodic, outflow, inflow)
○ Numerical boundaries between different parallel processes

● Number of ghost zones depends on the stencil size 
○ Lax-Wendroff: 1



Acoustic Wave Test
● How to test a hydrodynamic scheme?

○ Euler eqs. are coupled nonlinear eqs. → no trivial analytical solution

● Example: acoustic (sound) wave solution
○ Perturb the Euler eqs. 

■ Let                                                                         
■ Ignore all high-order terms 
■ Insert the plane wave solution and solve the dispersion relation



lec4-demo1-acoustic-wave-lax-wendroff

Demo



How about Nonlinear Solutions?
● Example: acoustic wave steepening:

● How does Lax-Wendroff scheme work in this case?
○ Try Increasing the d_amp parameter from 1e-6 to 1e-1 in the acoustic wave demo

nonlinear convection term 
for wave steepening



Sod Shock Tube Problem

Initial condition

Left state Right state

rarefaction wave

contact discontinuity

shock wave



lec4-demo2-shock-tube-lax-wendroff

Demo



Sod Shock Tube Problem
● Lax-Wendroff scheme

● Unphysical oscillations

● Motivate high-resolution 
shock-capturing schemes



High-Resolution Shock-Capturing Methods
● Godunov method

○ Approximate data with a piecewise constant distribution

○ Solve the local Riemann problems
■ Piecewise constant data with a single discontinuity (like shock tube)
■ Apply either exact or approximate solutions

○ Update data by averaging the Riemann problem solution over each cell
■ Equivalently, we can solve the intercell fluxes
■ Avoid wave interaction within each cell

Riemann problems



Riemann Problem in 1D Hydro
● Euler eqs. in 1D:

● Riemann problem:  
left state

right state



Riemann Problem in 1D Hydro
● Exact solution of the Riemann problem involves three waves

○ Contact discontinuity
○ Shock wave
○ Rarefaction wave

● Decompose the entire domain into four regions WL, W*L, W*R, WR

contact discontinuity 

shock or rarefaction wave

shock or rarefaction wave



Riemann Problem in 1D Hydro
● Riemann problem can be solved analytically

○ Known: WL, WR

○ Unknowns: W*L, W*R
■ In fact, we always have                                              (because the 

middle wave is always a contact discontinuity)
■ So only 4 unknown variables: 

● However, exact Riemann solver is very computationally expensive
○ Approximate Riemann solvers are usually accurate enough

■ All we need is the interface fluxes
■ Examples

● Roe solver
● HLLE solver
● HLLC solver



Higher-Order Godunov Methods
● MUSCL (Monotone Upstream–centred Scheme for Conservation 

Laws)

● Data reconstruction within each cell
○ Original Godunov’s scheme: piecewise constant method (PCM)
○ Piecewise linear method (PLM)
○ Piecewise parabolic method (PPM)



Higher-Order Godunov Methods
● Avoid introducing new local extrema during data reconstruction

○ Reduce spurious (i.e., unphysical) oscillations
○ Avoid unphysical values such as negative density/pressure

● Slope limiters
○  

○ Examples:                                                     

limited slope satisfying the TVD (Total Variation Diminishing) condition



Higher-Order Godunov Methods
● Effects of various slope limiters

○ Diffusiveness (resolution)  vs. robustness

● Left and right states are not equal unless the flow is smooth
○ Define Riemann problems

● Data reconstruction on the primitive variables usually results in 
better results (less oscillatory) than on the conserved variables
○ It may be even better to reconstruct the characteristic variables

■ Diagonalize the linearized eqs. of motion in the primitive variables
■ Determine eigenvectors
■ Perform eigen-decomposition on           and           to get the 

characteristic variables
■ Compute limited slopes on these characteristic variables



Second-Order Accuracy in Time
Example: MUSCL-Hancock scheme
1. Data reconstruction → obtain the face-centered data (i.e., data on the 

left and right edges of each cell) at tn

2. Evolve the face-centered data by Δt/2 using

3. Riemann solver → compute the inter-cell fluxes

4. Evolve the volume-averaged data by Δt

exactly the same fluxes;
no ghost zones are required



lec4-demo3-acoustic-wave-muscl-hancock

lec4-demo4-shock-tube-muscl-hancock

Demo



Sod Shock Tube with MUSCL-Hancock
MUSCL-Hancock ➝ much better! 
oscillations(much better!)

Lax-Wendroff ➝ unphysical oscillations... 


